Objectives

- Review: Asymptotic running times
- Implementing Gale-Shapley algorithm
- Classes of running times

Review Asymptotic Bounds

- What does $O(f(n))$ mean?

Asymptotic Order of Growth: Upper Bounds

- $T(n)$ is the worst case running time of an algorithm
- We say that $T(n)$ is $O(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$, we have $T(n) \leq c \cdot f(n)$.

$\Rightarrow T$ is asymptotically upperbounded by f.

Upper Bounds Example

- Find an upperbound for $T(n) = pn^2 + qn + r$
 - p, q, r are positive constants

Idea: Let's inflate the terms in the equation so that all terms are n^2.

- $T(n)$ is bounded above by a constant multiple of $f(n)$.

$\Rightarrow T(n) \leq cn^2$, where $c = p + q + r$

$T(n) = O(n^3)$
- Also correct to say that $T(n) = O(n^3)$.

Upper Bounds Example

- $T(n) = pn^2 + qn + r$
 - p, q, r are positive constants
 - For all $n \geq 1$,

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>$= pn^2 + qn + r$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\leq pn^2 + qn^2 + rn^2$</td>
</tr>
<tr>
<td></td>
<td>$= (p + q + r) n^2$</td>
</tr>
<tr>
<td></td>
<td>$= c n^2$</td>
</tr>
</tbody>
</table>

$\Rightarrow T(n) \leq cn^2$, where $c = p + q + r$

$T(n) = O(n^3)$
- Also correct to say that $T(n) = O(n^3)$.

Notation
- $T(n) = O(f(n))$ is a slight abuse of notation
 - Asymmetric: $f(n) = 5n^2$, $g(n) = 3n^2$
 - But $f(n)
eq O(g(n))$
 - Better notation: $T(n) \in O(f(n))$
- Meaningless statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons
 - Use Ω for lower bounds

Example: Lower Bound
- $T(n) = pn^2 + qn + r$
 - p, q, r are positive constants
- Idea: Deflate terms rather than inflate
- For all $n \geq 0$,
 - $T(n) = pn^2 + qn + r \geq pn^2$
 - $T(n) \geq \varepsilon n^2$, where $\varepsilon = p > 0$
 - $T(n) = \Omega(n^2)$
- Also correct to say that $T(n) = \Omega(n)$

Asymptotic Order of Growth: Lower Bounds
- Complementary to upper bound
 - $T(n)$ is $\Omega(f(n))$ if there exist constants $\varepsilon > 0$ and n_0 such that for all $n \geq n_0$, we have $T(n) \geq \varepsilon \cdot f(n)$
 - $T(n)$ is bounded below by a constant multiple of $f(n)$
 - $T(n)$ is asymptotically lower bounded by $f(n)$

Tight bounds
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$
 - The “right” bound

Property: Transitivity
- If $f = O(g)$ and $g = O(h)$ then $f = O(h)$
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$

Property: Additivity
- If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$

Sketch proof for O:
- By defn, $f \leq c \cdot h$
- By defn, $g \leq d \cdot h$
- $f + g \leq c \cdot h + d \cdot h = (c + d) \cdot h = c' \cdot h$
- $\Rightarrow f + g \in O(h)$
Practice: Asymptotic Order of Growth

What are the upper bounds, lower bounds, and tight bound on $T(n)$?

- $T(n) = 32n^2 + 17n + 32$

Jan 19, 2016 Sprenkle - CSCI211

Asymptotic Bounds for Polynomials

- $a_0 + a_1 n + \ldots + a_d n^d \in \Theta(n^d)$ if $a_d > 0$
 ➔ Runtime determined by highest-order term

- Polynomial time. Running time is $O(n^d)$ for some constant d that is independent of the input size n

- Other examples of polynomial times:
 - $O(n^{1/2})$
 - $O(n^{1.58})$
 - $O(n \log n) \leq O(n^2)$

Jan 19, 2016 Sprenkle - CSCI211

Asymptotic Bounds for Logarithms

- Logarithms. $\log_b n = x$, where $b^x = n$
 ➔ Approximate: To represent n in base-b, need $x + 1$ digits

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>6.64</td>
</tr>
<tr>
<td>1000</td>
<td>2</td>
<td>9.92</td>
</tr>
</tbody>
</table>

Jan 19, 2016 Sprenkle - CSCI211

Asymptotic Bounds for Logarithms

- Logarithms. $\log_b n = x$, where $b^x = n$
 ➔ Approximate: To represent n in base-b, need $x + 1$ digits

<table>
<thead>
<tr>
<th>n</th>
<th>b</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>6.64</td>
</tr>
<tr>
<td>1000</td>
<td>2</td>
<td>9.92</td>
</tr>
</tbody>
</table>

Describe the running time of an $O(\log n)$ algorithm as the input size grows. Compare with polynomials.
Asymptotic Bounds for Logarithms

- **Logarithms.** $\log_b n = x$, where $b^x = n$
 - x is number of digits to represent n in base-b representation
 - **Slowly growing functions**
 - **Identity:** $\log_b n = \frac{\log_a n}{\log_a b}$
 - Means that $\log_a n = \frac{1}{\log_b a} \cdot \log_b n$
 - Constant!
 - $O(\log_a n) = O(\log_b n)$ for any constants $a, b > 0$

Asymptotic Bounds for Exponentials

- **Exponentials:** functions of the form $f(n) = r^n$ for constant base r
 - Faster growth rates as n increases
 - For every $r > 1$ and every $d > 0$, $n^d = O(r^n)$
 - **Every exponential grows faster than every polynomial**

Summary of Asymptotic Bounds

- In terms of growth rates
 - $\text{Logarithms} < \text{Polynomials} < \text{Exponentials}$
- Practice comparing functions on next problem set
 - See Chapter 2 solved exercise

Review: Our Process

1. Understand/identify problem
 - Simplify as appropriate
2. Design a solution
3. Analyze
 - Correctness, efficiency
 - May need to go back to step 2 and try again
4. Implement
 - Within bounds shown in analysis
IMPLEMENTING GALE-SHAPLEY ALGORITHM

Jan 19, 2016
Sprenkle - CSCI211

Review:
Gale-Shapley Stable Matching Algorithm

Initialize each person to be free
while (some man is free and hasn't proposed to every woman)
 Choose such a man \(m \)
 \(w = 1^{st} \) woman on \(m \)'s list to whom \(m \) has not yet proposed
 if \(w \) is free
 assign \(m \) and \(w \) to be engaged
 else if \(w \) prefers \(m \) to her fiancé \(m' \)
 assign \(m \) and \(w \) to be engaged and \(m' \) to be free
 else
 \(w \) rejects \(m \)

How Can We Implement The Algorithm Efficiently?

• What is our goal for the implementation’s runtime?
• What do we need to model?
• How should we represent them?

Stable Matching Implementation

• What do we need to represent?
• How should we represent them?

<table>
<thead>
<tr>
<th>Data</th>
<th>How represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men, Women</td>
<td></td>
</tr>
<tr>
<td>Preference lists</td>
<td></td>
</tr>
<tr>
<td>Unmatched men</td>
<td></td>
</tr>
<tr>
<td>Who men proposed to</td>
<td></td>
</tr>
<tr>
<td>Engagements</td>
<td></td>
</tr>
</tbody>
</table>

Arrays

• Fixed number of elements
• What is the runtime of
 ➢ Determining the value of the \(i^{th} \) item in the array?
 ➢ Determining if a value \(e \) is in the array?
 ➢ Determining if a value \(e \) is in the array if the array is sorted?
Array Operations’ Running Times

<table>
<thead>
<tr>
<th>Operation</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of (i^{th}) item</td>
<td>(O(1)) → direct access</td>
</tr>
<tr>
<td>If (e) is in the array</td>
<td>(O(n)) → look through all the elements</td>
</tr>
<tr>
<td>If (e) is in the array if sorted</td>
<td>(O(\log n)) → binary search</td>
</tr>
</tbody>
</table>

Limitation of arrays?

Fixed size, so difficult to add/delete elements

Lists

- Dynamic set of elements
 - Linked list
 - Doubly linked list
- What is the running time to
 - Add an element to the list?
 - Delete an element from the list?
 - Find an element \(e\) in the list?
 - Find the \(i^{th}\) element in the list?

List Operations’ Running Time

<table>
<thead>
<tr>
<th>Operation</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add element</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Delete element</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Find element</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Find (i^{th}) element</td>
<td>(O(i))</td>
</tr>
</tbody>
</table>

Disadvantage of list instead of array?

Finding \(i^{th}\) element is slower

Converting between Lists and Arrays (and Vice Versa)

- What is the running time of converting a list to an array?
- An array to a list?
 \(O(n)\)

Stable Matching Implementation

- What do we need to represent? How should we represent them?

Data	How represented
Men, Women | Integers (like ids)
Preference lists | Array of arrays (2d array)
Unmatched men | List
Who men proposed to | Integer for each man → Array of integers
Engagements | 2 Arrays
Looking Ahead

• Review Chapter 2
 ➢ Finishing up on Thursday
• Return surveys – Thursday class
• Problem Set 1 due by 5 p.m. Friday