Objectives
- Algorithms Retrospective
- Computational intractability

Review
- What is the power of the max-flow/min-cut algorithm?
- What is our process in solving problems using network flow?

Review: Network Flow Solutions
1. Model problem as a flow network
 - Describe what nodes, edges, and capacity represent
 - Describe what flow represents and how that maps to your solution
 - Run Ford-Fulkerson algorithm
 - Map back to original problem
2. Prove that the solution found is correct/feasible/ optimal
3. Prove that you find all solutions
4. Analyze running time
 - Creating model
 - FF algorithm

Objectives
- Oh, the places you’ve been!
- Oh, the places you’ll go!

Algorithm Design Patterns
- What are some approaches to solving problems?
- How do they compare in terms of difficulty?

Algorithm Design Patterns
- Greedy
- Divide-and-conquer
- Dynamic programming
- Duality/network flow

Course Objectives: Given a problem...
- You’ll recognize when to try an approach
 - AND, when to bail out and try something different
- Know the steps to solve the problem using the approach
 - e.g., breaking it into subproblems, sorting possibilities in some order
- Know how to analyze the run time of the solution
 - e.g., solving recurrence relation
My Algorithms Approach

- Why problems?
- Why wiki?
- Research to support decisions

Algorithm Design Patterns

- Greedy
- Divide-and-conquer
- Dynamic programming
- Duality/network flow
- Reductions – Chapter 8
- Local search – Chapter 8
- Randomization – Chapter 13

Now you “get” this xkcd comic

What Was Our Goal In Finding a Solution?

Polynomial Time \rightarrow Efficient

Classify Problems According to Computational Requirements

POLYNOMIAL-TIME REDUCTIONS

Fundamental Question:
Which problems will we be able to solve in practice?
Classify Problems According to Computational Requirements

Which problems will we be able to solve in practice?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Longest path</td>
<td>Exponential</td>
</tr>
<tr>
<td>Matching</td>
<td>Polynomial</td>
</tr>
<tr>
<td>3D-matching</td>
<td>Exponential</td>
</tr>
<tr>
<td>Max cut</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Min cut</td>
<td>Exponential</td>
</tr>
<tr>
<td>2-SAT</td>
<td>Polynomial</td>
</tr>
<tr>
<td>3-SAT</td>
<td>Exponential</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Vertex cover</td>
<td>Exponential</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

Classify Problems

Classify problems according to those that can be solved in polynomial-time and those that cannot.

Poly, Exponential

Frustrating news: Many problems have defied classification.

Examples:
- Given a Turing machine, does it halt in at most \(k \) steps?
- Given a board position in an \(n \times n \) generalization of chess, can black guarantee a win?

Chapter 8. Show that problems are "computationally equivalent" and appear to be manifestations of one really hard problem.

The Big Question

NP: "nondeterministic polynomial time"

\[P \subseteq NP \]

Are there polynomial-time solutions to NP problems?

In the mean time...

Classify problems according to those that can be solved in polynomial-time and those that cannot.

Poly, Exponential

Frustrating news: Many problems have defied classification.

Examples:
- Given a Turing machine, does it halt in at most \(k \) steps?
- Given a board position in an \(n \times n \) generalization of chess, can black guarantee a win?

Chapter 8. Show that problems are "computationally equivalent" and appear to be manifestations of one really hard problem.

Polynomial-Time Reduction

Suppose we could solve \(Y \) in polynomial-time. What else could we solve in polynomial time?

- Reduction. Problem \(X \) polynomial reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem \(Y \)
 - Assume have a black box that can solve \(Y \)

For \(X \) polynomial reduces to \(Y \)

- Notation: \(X \leq P Y \)
 - "\(X \) is polynomial-time reducible to \(Y \)"

Conclusion: If \(Y \) can be solved in polynomial time and \(X \leq P Y \), then \(X \) can be solved in polynomial time.
Fun Fact: Connecting Chapters 7 and 8
- Karp
 - of the Edmonds-Karp algorithm (max-flow problem on networks)
 - published a paper in complexity theory on "Reducibility Among Combinatorial Problems"
- proved 21 Problems to be NP-complete

NP-Complete Problems
- Problems from many different domains whose complexity is unknown
- NP-completeness and proof that all problems are equivalent is powerful!
 - All open complexity questions ➔ ONE open question!
- What does this mean?
 - "Computationally hard for practical purposes, but we can’t prove it”
 - If you find an NP-Complete problem, you can stop looking for an efficient solution
 - Or figure out efficient solution for ALL NP-complete problems

Polynomial-Time Reduction
- Purpose. Classify problems according to relative difficulty.
- Design algorithms. If X ≤p Y and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
- Establish intractability. If X ≤p Y and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
- Establish equivalence. If X ≤p Y and Y ≤p X, we use notation X ≡p Y.

Considering X ≤p Y
- Need to be careful putting X in terms of Y
- Make sure you’re not putting an easy problem (X) in terms of a hard problem (Y)
 - While you could do that, what does that do for you?
 - Just because Y is hard to solve does *not* mean that X is hard to solve

Basic Reduction Strategies
- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction by encoding with gadgets

Independent Set
- Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V such that |S| ≥ k and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?
Independent Set

- Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \geq k \) and for each edge at most one of its endpoints is in \(S \)?

Ex. Is there an independent set of size \(\geq 6 \)? Yes
Ex. Is there an independent set of size \(\geq 7 \)? No

Vertex Cover

- Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \leq k \) and for each edge, at least one of its endpoints is in \(S \)?

A vertex covers an edge.

Application: place guards within an art gallery so that all corridors are visible at any time

Ex. Is there a vertex cover of size \(\leq 4 \)?
Ex. Is there a vertex cover of size \(\leq 3 \)?

Problem

- Not known if finding Independent Set or Vertex Cover can be solved in polynomial time
- BUT, what can we say about their relative difficulty?

Vertex Cover and Independent Set

- Claim. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \)
- Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover

Claim. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \)

Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover

- Let \(S \) be an independent set
- Consider an arbitrary edge \((u, v)\)
- Since \(S \) is an independent set \(\Rightarrow u \not\in S \text{ or } v \not\in S \text{ or both } \not\in S \Rightarrow u \in V - S \text{ or } v \in V - S \text{ or both } \in V - S \)
- Thus, \(V - S \) covers \((u, v)\)
- Every edge has at least one end in \(V - S \)
- \(V - S \) is a vertex cover
Vertex Cover and Independent Set

- **Claim.** $\text{VERTEX-COVER} \equiv \text{INDEPENDENT-SET}$
- **Pf.** We show S is an independent set iff $V - S$ is a vertex cover
 - \Rightarrow
 - Let $V - S$ be any vertex cover
 - Consider two nodes $u \subseteq S$ and $v \subseteq S$
 - Observe that $(u, v) \not\in E$ since $V - S$ is a vertex cover
 - Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set

Using the Previous Result

- Problem X *polynomial reduces to* problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, *plus*
 - Polynomial number of calls to oracle that solves problem Y
- Assume have a black box that can solve Y

Summary

- If we have a block box to solve Vertex Cover, can decide whether G has an independent set of size at least k by asking the black box whether G has a vertex cover of size at most $n - k$
- If we have a block box to solve Independent Set, can decide whether G has a vertex cover of size at most k by asking the block box whether G has an independent set of size at least $n - k$

Final

- Usual rules
- Due next Friday, 5 p.m. (end of exams)
- Can use book, notes, handouts, my lecture notes, me (limited)
 - "The status of the P versus NP problem", Chicago Mag article
 - No other outside resources
- Office hours:
 - Monday: 10 a.m. – 5 p.m.
 - Tuesday: 9:10 a.m. – 5 p.m.
 - Thursday: 9:10 a.m. – 2:30 p.m.
 - Appointments preferable during that time
 - Others by appointment
 - Can email about other appointments as necessary
- Evaluations due Sunday at midnight on Sakai (tests and quizzes)