Objectives

• Concluding CS111
 ➢ Other programming languages
 ➢ What is computer science?

Applying What You Know To Other Languages

• At the beginning of the semester, some of you asked
 ➢ “Why Python?”
 ➢ “Will I be able to read/write programs in other programming languages?”
• We’ll answer the first by showing that you can do the second

Applying What You Know To Other Languages

• Syntax: symbols used
• Semantics: what the symbols mean

What is the Python Program Doing?

• Page 4 of handouts

What is the Python Program Doing?

• Getting a line of input from “standard in” (from the user)
• Splitting the input into integers
• Calculating the result to a formula
• Deciding if a student is admitted, based on the result of the formula

Admissions Problem

• Binary University decides to admit students based on a formula that weighs various factors
 ➢ Scores of 70 or better are admitted
• Input: single line, 4 integers, in order below

<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
<th>Weight Factor (Multiplier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School GPA</td>
<td>0 - 10</td>
<td>0.25</td>
</tr>
<tr>
<td>SAT score</td>
<td>600-2400</td>
<td>.01</td>
</tr>
<tr>
<td>AP Courses</td>
<td>0-10</td>
<td>10</td>
</tr>
<tr>
<td>Intangibles</td>
<td>1-10</td>
<td>8</td>
</tr>
</tbody>
</table>
Example Input/Expected Output

<table>
<thead>
<tr>
<th>Input</th>
<th>Expected Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 300</td>
<td>DENY</td>
</tr>
<tr>
<td>6 10 99 2390</td>
<td>ADMIT</td>
</tr>
<tr>
<td>0 7 82 1500</td>
<td>ADMIT</td>
</tr>
<tr>
<td>2 5 0 990</td>
<td>DENY</td>
</tr>
<tr>
<td>2 5 0 1000</td>
<td>ADMIT</td>
</tr>
<tr>
<td>2 5 0 1010</td>
<td>ADMIT</td>
</tr>
</tbody>
</table>

What is the Python Program Doing?

- Getting a line of input from “standard in” (from the user)
- Splitting the input into integers
- Calculating the result to a formula
- Deciding if a student is admitted, based on the result of the formula

Identify these pieces in the other programs

Example Programs

- printLab.sh
 - Bash script

Comparing Programming Languages

- How is the syntax/semantics of these languages different from Python?
 - What is easier or harder to do in these other programming languages than in Python?

Comparing Programming Languages

- Benefits of Python:
 - Simpler syntax (e.g., fewer {} and ())
 - Can cover some content with less overhead
- Drawbacks
 - Data types aren’t explicit (static)
 - Can be harder for you to remember and keep straight
 - Not compiled explicitly beforehand
 - Keep executing to find all the syntax bugs
 - Doesn’t check: “you’re passing a file instead of a string”
 - Allows you to do some crazy stuff that won’t work in other programming languages

Who Uses Python?

- Google
 - Backends of Gmail and Google Maps and search-engine internals
- NASA
 - Collaborative engineering
- Yahoo
 - Groups: Maintain discussion groups; Maps
- RedHat Linux
 - System infrastructure
- Original BitTorrent client; Youtube; Civilization IV
Computer Science Fields

- **Systems**
 - Architecture
 - Operating systems
 - Networks
 - Distributed and parallel systems
 - Databases
 - Security

- **Software**
 - Compilers
 - Graphics
 - Software engineering
 - Software testing

- **Theory**
 - Algorithms
 - Theory of computation

- **Other**
 - Artificial intelligence
 - Robotics
 - Natural language processing
 - Bioinformatics
 - Visualization
 - Numerical analysis

- * Often research involves combinations of these fields
- * Not just programming!
 - But programming is a tool to do much, much more!

CS == Complexity Science

- **Study of Complexity**
 - How can it be done?
 - Based on information
 - Managing, manipulating data
 - Possible algorithms
 - How well can it be done?
 - Most efficient algorithm in terms of time and/or space
 - Can it be done at all?
 - Often, proof is a program—an implementation of the above

Broader Issues

- **Articles:**
 - Tech education, Puzzles of Cyberspace, DARPA Urban challenge, Excel Bug, Metaphors, Sensor Networks, Social Networks, OLPC
- **Questions**
 - Most liked article? Least liked article?
 - Who found the articles overall least interesting?
 - Most interesting?

- **Group 1:** Russ, Carrie, Mallory, Chen, Ben
- **Group 2:** Craig, Aaron, Kevin, Sara, Dylan
- **Group 3:** Thomas, David, Charles, Michelle
- **Group 4:** Greg, Camille, Mike, Taylor

- **One Laptop Per Child**
 - An experiment on bringing cheap but educational technology to poor children
- **What challenges did OLPC face and how did that affect their design decisions?**
- **What are some unusual features of the laptop?**
- **What does this technology mean for better-off countries?**
- **Is this project worthwhile?**
Discussion

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Design Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of power</td>
<td>New, cheap battery; Consumes less power; Alternative power sources: solar power, pull cord</td>
</tr>
<tr>
<td>Software bloat</td>
<td>Rewrite code more compactly, efficiently</td>
</tr>
<tr>
<td>Environment</td>
<td>Dust proof, drop proof, light</td>
</tr>
<tr>
<td>Users: children</td>
<td>Simple user interfaces; tiny keyboard; lightweight; applications keep students interested</td>
</tr>
<tr>
<td>Cost</td>
<td>Linux, Python, open-sources tools; cheaper battery; no hard drive; no CD/DVD drive</td>
</tr>
</tbody>
</table>

Conclusions

- See impact of computer science on your life
- Understand some of the computing issues better
 - Taking out some of the mystery
 - Security, testing, debugging, efficiency
- Algorithms are everywhere
 - Process for solving problems
 - Mapping human intuition to systematic/automatic process